| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑋  ∈  ( { 𝐴 }  ∪  ( { 𝐵 ,  𝐶 ,  𝐷 }  ∪  { 𝐸 ,  𝐹 ,  𝐺 } ) )  ↔  ( 𝑋  ∈  { 𝐴 }  ∨  𝑋  ∈  ( { 𝐵 ,  𝐶 ,  𝐷 }  ∪  { 𝐸 ,  𝐹 ,  𝐺 } ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elsng | 
							⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  { 𝐴 }  ↔  𝑋  =  𝐴 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑋  ∈  ( { 𝐵 ,  𝐶 ,  𝐷 }  ∪  { 𝐸 ,  𝐹 ,  𝐺 } )  ↔  ( 𝑋  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  ∨  𝑋  ∈  { 𝐸 ,  𝐹 ,  𝐺 } ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eltpg | 
							⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  ↔  ( 𝑋  =  𝐵  ∨  𝑋  =  𝐶  ∨  𝑋  =  𝐷 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eltpg | 
							⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  { 𝐸 ,  𝐹 ,  𝐺 }  ↔  ( 𝑋  =  𝐸  ∨  𝑋  =  𝐹  ∨  𝑋  =  𝐺 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							orbi12d | 
							⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑋  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  ∨  𝑋  ∈  { 𝐸 ,  𝐹 ,  𝐺 } )  ↔  ( ( 𝑋  =  𝐵  ∨  𝑋  =  𝐶  ∨  𝑋  =  𝐷 )  ∨  ( 𝑋  =  𝐸  ∨  𝑋  =  𝐹  ∨  𝑋  =  𝐺 ) ) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							bitrid | 
							⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  ( { 𝐵 ,  𝐶 ,  𝐷 }  ∪  { 𝐸 ,  𝐹 ,  𝐺 } )  ↔  ( ( 𝑋  =  𝐵  ∨  𝑋  =  𝐶  ∨  𝑋  =  𝐷 )  ∨  ( 𝑋  =  𝐸  ∨  𝑋  =  𝐹  ∨  𝑋  =  𝐺 ) ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							orbi12d | 
							⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑋  ∈  { 𝐴 }  ∨  𝑋  ∈  ( { 𝐵 ,  𝐶 ,  𝐷 }  ∪  { 𝐸 ,  𝐹 ,  𝐺 } ) )  ↔  ( 𝑋  =  𝐴  ∨  ( ( 𝑋  =  𝐵  ∨  𝑋  =  𝐶  ∨  𝑋  =  𝐷 )  ∨  ( 𝑋  =  𝐸  ∨  𝑋  =  𝐹  ∨  𝑋  =  𝐺 ) ) ) ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							bitrid | 
							⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  ( { 𝐴 }  ∪  ( { 𝐵 ,  𝐶 ,  𝐷 }  ∪  { 𝐸 ,  𝐹 ,  𝐺 } ) )  ↔  ( 𝑋  =  𝐴  ∨  ( ( 𝑋  =  𝐵  ∨  𝑋  =  𝐶  ∨  𝑋  =  𝐷 )  ∨  ( 𝑋  =  𝐸  ∨  𝑋  =  𝐹  ∨  𝑋  =  𝐺 ) ) ) ) )  |