Metamath Proof Explorer


Theorem el7g

Description: Members of a set with seven elements. Lemma for usgrexmpl2nb0 etc. (Contributed by AV, 9-Aug-2025)

Ref Expression
Assertion el7g ( 𝑋𝑉 → ( 𝑋 ∈ ( { 𝐴 } ∪ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 = 𝐴 ∨ ( ( 𝑋 = 𝐵𝑋 = 𝐶𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸𝑋 = 𝐹𝑋 = 𝐺 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 elun ( 𝑋 ∈ ( { 𝐴 } ∪ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 ∈ { 𝐴 } ∨ 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) )
2 elsng ( 𝑋𝑉 → ( 𝑋 ∈ { 𝐴 } ↔ 𝑋 = 𝐴 ) )
3 elun ( 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ↔ ( 𝑋 ∈ { 𝐵 , 𝐶 , 𝐷 } ∨ 𝑋 ∈ { 𝐸 , 𝐹 , 𝐺 } ) )
4 eltpg ( 𝑋𝑉 → ( 𝑋 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ ( 𝑋 = 𝐵𝑋 = 𝐶𝑋 = 𝐷 ) ) )
5 eltpg ( 𝑋𝑉 → ( 𝑋 ∈ { 𝐸 , 𝐹 , 𝐺 } ↔ ( 𝑋 = 𝐸𝑋 = 𝐹𝑋 = 𝐺 ) ) )
6 4 5 orbi12d ( 𝑋𝑉 → ( ( 𝑋 ∈ { 𝐵 , 𝐶 , 𝐷 } ∨ 𝑋 ∈ { 𝐸 , 𝐹 , 𝐺 } ) ↔ ( ( 𝑋 = 𝐵𝑋 = 𝐶𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸𝑋 = 𝐹𝑋 = 𝐺 ) ) ) )
7 3 6 bitrid ( 𝑋𝑉 → ( 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ↔ ( ( 𝑋 = 𝐵𝑋 = 𝐶𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸𝑋 = 𝐹𝑋 = 𝐺 ) ) ) )
8 2 7 orbi12d ( 𝑋𝑉 → ( ( 𝑋 ∈ { 𝐴 } ∨ 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 = 𝐴 ∨ ( ( 𝑋 = 𝐵𝑋 = 𝐶𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸𝑋 = 𝐹𝑋 = 𝐺 ) ) ) ) )
9 1 8 bitrid ( 𝑋𝑉 → ( 𝑋 ∈ ( { 𝐴 } ∪ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 = 𝐴 ∨ ( ( 𝑋 = 𝐵𝑋 = 𝐶𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸𝑋 = 𝐹𝑋 = 𝐺 ) ) ) ) )