Step |
Hyp |
Ref |
Expression |
1 |
|
elun |
⊢ ( 𝑋 ∈ ( { 𝐴 } ∪ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 ∈ { 𝐴 } ∨ 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ) |
2 |
|
elsng |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ { 𝐴 } ↔ 𝑋 = 𝐴 ) ) |
3 |
|
elun |
⊢ ( 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ↔ ( 𝑋 ∈ { 𝐵 , 𝐶 , 𝐷 } ∨ 𝑋 ∈ { 𝐸 , 𝐹 , 𝐺 } ) ) |
4 |
|
eltpg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ) ) |
5 |
|
eltpg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ { 𝐸 , 𝐹 , 𝐺 } ↔ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) |
6 |
4 5
|
orbi12d |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑋 ∈ { 𝐵 , 𝐶 , 𝐷 } ∨ 𝑋 ∈ { 𝐸 , 𝐹 , 𝐺 } ) ↔ ( ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) ) |
7 |
3 6
|
bitrid |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ↔ ( ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) ) |
8 |
2 7
|
orbi12d |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑋 ∈ { 𝐴 } ∨ 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 = 𝐴 ∨ ( ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) ) ) |
9 |
1 8
|
bitrid |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ ( { 𝐴 } ∪ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 = 𝐴 ∨ ( ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) ) ) |