Metamath Proof Explorer


Theorem elALT

Description: Alternate proof of el , shorter but requiring more axioms. (Contributed by NM, 4-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elALT 𝑦 𝑥𝑦

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 snid 𝑥 ∈ { 𝑥 }
3 snex { 𝑥 } ∈ V
4 eleq2 ( 𝑦 = { 𝑥 } → ( 𝑥𝑦𝑥 ∈ { 𝑥 } ) )
5 3 4 spcev ( 𝑥 ∈ { 𝑥 } → ∃ 𝑦 𝑥𝑦 )
6 2 5 ax-mp 𝑦 𝑥𝑦