Step |
Hyp |
Ref |
Expression |
1 |
|
df-aa |
⊢ 𝔸 = ∪ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ◡ 𝑓 “ { 0 } ) |
2 |
1
|
eleq2i |
⊢ ( 𝐴 ∈ 𝔸 ↔ 𝐴 ∈ ∪ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ◡ 𝑓 “ { 0 } ) ) |
3 |
|
eliun |
⊢ ( 𝐴 ∈ ∪ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ◡ 𝑓 “ { 0 } ) ↔ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) 𝐴 ∈ ( ◡ 𝑓 “ { 0 } ) ) |
4 |
|
eldifi |
⊢ ( 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → 𝑓 ∈ ( Poly ‘ ℤ ) ) |
5 |
|
plyf |
⊢ ( 𝑓 ∈ ( Poly ‘ ℤ ) → 𝑓 : ℂ ⟶ ℂ ) |
6 |
|
ffn |
⊢ ( 𝑓 : ℂ ⟶ ℂ → 𝑓 Fn ℂ ) |
7 |
|
fniniseg |
⊢ ( 𝑓 Fn ℂ → ( 𝐴 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) ) ) |
8 |
4 5 6 7
|
4syl |
⊢ ( 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ( 𝐴 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) ) ) |
9 |
8
|
rexbiia |
⊢ ( ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) 𝐴 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝐴 ∈ ℂ ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
10 |
|
r19.42v |
⊢ ( ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝐴 ∈ ℂ ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
11 |
9 10
|
bitri |
⊢ ( ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) 𝐴 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
12 |
3 11
|
bitri |
⊢ ( 𝐴 ∈ ∪ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
13 |
2 12
|
bitri |
⊢ ( 𝐴 ∈ 𝔸 ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |