| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-aa | ⊢ 𝔸  =  ∪  𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( ◡ 𝑓  “  { 0 } ) | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝐴  ∈  𝔸  ↔  𝐴  ∈  ∪  𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( ◡ 𝑓  “  { 0 } ) ) | 
						
							| 3 |  | eliun | ⊢ ( 𝐴  ∈  ∪  𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( ◡ 𝑓  “  { 0 } )  ↔  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) 𝐴  ∈  ( ◡ 𝑓  “  { 0 } ) ) | 
						
							| 4 |  | eldifi | ⊢ ( 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  →  𝑓  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 5 |  | plyf | ⊢ ( 𝑓  ∈  ( Poly ‘ ℤ )  →  𝑓 : ℂ ⟶ ℂ ) | 
						
							| 6 |  | ffn | ⊢ ( 𝑓 : ℂ ⟶ ℂ  →  𝑓  Fn  ℂ ) | 
						
							| 7 |  | fniniseg | ⊢ ( 𝑓  Fn  ℂ  →  ( 𝐴  ∈  ( ◡ 𝑓  “  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) ) | 
						
							| 8 | 4 5 6 7 | 4syl | ⊢ ( 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  →  ( 𝐴  ∈  ( ◡ 𝑓  “  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) ) | 
						
							| 9 | 8 | rexbiia | ⊢ ( ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) 𝐴  ∈  ( ◡ 𝑓  “  { 0 } )  ↔  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝐴  ∈  ℂ  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 10 |  | r19.42v | ⊢ ( ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝐴  ∈  ℂ  ∧  ( 𝑓 ‘ 𝐴 )  =  0 )  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 11 | 9 10 | bitri | ⊢ ( ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) 𝐴  ∈  ( ◡ 𝑓  “  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 12 | 3 11 | bitri | ⊢ ( 𝐴  ∈  ∪  𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( ◡ 𝑓  “  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 13 | 2 12 | bitri | ⊢ ( 𝐴  ∈  𝔸  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) ) |