Metamath Proof Explorer


Theorem elaa

Description: Elementhood in the set of algebraic numbers. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion elaa ( 𝐴 ∈ 𝔸 ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓𝐴 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 df-aa 𝔸 = 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 “ { 0 } )
2 1 eleq2i ( 𝐴 ∈ 𝔸 ↔ 𝐴 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 “ { 0 } ) )
3 eliun ( 𝐴 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 “ { 0 } ) ↔ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) 𝐴 ∈ ( 𝑓 “ { 0 } ) )
4 eldifi ( 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → 𝑓 ∈ ( Poly ‘ ℤ ) )
5 plyf ( 𝑓 ∈ ( Poly ‘ ℤ ) → 𝑓 : ℂ ⟶ ℂ )
6 ffn ( 𝑓 : ℂ ⟶ ℂ → 𝑓 Fn ℂ )
7 fniniseg ( 𝑓 Fn ℂ → ( 𝐴 ∈ ( 𝑓 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝑓𝐴 ) = 0 ) ) )
8 4 5 6 7 4syl ( 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → ( 𝐴 ∈ ( 𝑓 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝑓𝐴 ) = 0 ) ) )
9 8 rexbiia ( ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) 𝐴 ∈ ( 𝑓 “ { 0 } ) ↔ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝐴 ∈ ℂ ∧ ( 𝑓𝐴 ) = 0 ) )
10 r19.42v ( ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝐴 ∈ ℂ ∧ ( 𝑓𝐴 ) = 0 ) ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓𝐴 ) = 0 ) )
11 9 10 bitri ( ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) 𝐴 ∈ ( 𝑓 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓𝐴 ) = 0 ) )
12 3 11 bitri ( 𝐴 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓𝐴 ) = 0 ) )
13 2 12 bitri ( 𝐴 ∈ 𝔸 ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓𝐴 ) = 0 ) )