| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aasscn | ⊢ 𝔸  ⊆  ℂ | 
						
							| 2 |  | eldifi | ⊢ ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  →  𝐴  ∈  𝔸 ) | 
						
							| 3 | 1 2 | sselid | ⊢ ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | elaa | ⊢ ( 𝐴  ∈  𝔸  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑔 ‘ 𝐴 )  =  0 ) ) | 
						
							| 5 | 2 4 | sylib | ⊢ ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  →  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑔 ‘ 𝐴 )  =  0 ) ) | 
						
							| 6 | 5 | simprd | ⊢ ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  →  ∃ 𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑔 ‘ 𝐴 )  =  0 ) | 
						
							| 7 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  ∧  𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑔 ‘ 𝐴 )  =  0 )  →  𝐴  ∈  𝔸 ) | 
						
							| 8 |  | eldifsni | ⊢ ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  →  𝐴  ≠  0 ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  ∧  𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑔 ‘ 𝐴 )  =  0 )  →  𝐴  ≠  0 ) | 
						
							| 10 |  | eldifi | ⊢ ( 𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  →  𝑔  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  ∧  𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑔 ‘ 𝐴 )  =  0 )  →  𝑔  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 12 |  | eldifsni | ⊢ ( 𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  →  𝑔  ≠  0𝑝 ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  ∧  𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑔 ‘ 𝐴 )  =  0 )  →  𝑔  ≠  0𝑝 ) | 
						
							| 14 |  | simp3 | ⊢ ( ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  ∧  𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑔 ‘ 𝐴 )  =  0 )  →  ( 𝑔 ‘ 𝐴 )  =  0 ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  =  ( ( coeff ‘ 𝑔 ) ‘ 𝑛 ) ) | 
						
							| 16 | 15 | neeq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0  ↔  ( ( coeff ‘ 𝑔 ) ‘ 𝑛 )  ≠  0 ) ) | 
						
							| 17 | 16 | cbvrabv | ⊢ { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 }  =  { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑛 )  ≠  0 } | 
						
							| 18 | 17 | infeq1i | ⊢ inf ( { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 } ,  ℝ ,   <  )  =  inf ( { 𝑛  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  ) | 
						
							| 19 |  | fvoveq1 | ⊢ ( 𝑗  =  𝑘  →  ( ( coeff ‘ 𝑔 ) ‘ ( 𝑗  +  inf ( { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 } ,  ℝ ,   <  ) ) )  =  ( ( coeff ‘ 𝑔 ) ‘ ( 𝑘  +  inf ( { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 20 | 19 | cbvmptv | ⊢ ( 𝑗  ∈  ℕ0  ↦  ( ( coeff ‘ 𝑔 ) ‘ ( 𝑗  +  inf ( { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 } ,  ℝ ,   <  ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( coeff ‘ 𝑔 ) ‘ ( 𝑘  +  inf ( { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝑔 )  −  inf ( { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 } ,  ℝ ,   <  ) ) ) ( ( ( 𝑗  ∈  ℕ0  ↦  ( ( coeff ‘ 𝑔 ) ‘ ( 𝑗  +  inf ( { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 } ,  ℝ ,   <  ) ) ) ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( ( deg ‘ 𝑔 )  −  inf ( { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 } ,  ℝ ,   <  ) ) ) ( ( ( 𝑗  ∈  ℕ0  ↦  ( ( coeff ‘ 𝑔 ) ‘ ( 𝑗  +  inf ( { 𝑚  ∈  ℕ0  ∣  ( ( coeff ‘ 𝑔 ) ‘ 𝑚 )  ≠  0 } ,  ℝ ,   <  ) ) ) ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 22 | 7 9 11 13 14 18 20 21 | elaa2lem | ⊢ ( ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  ∧  𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑔 ‘ 𝐴 )  =  0 )  →  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 23 | 22 | rexlimdv3a | ⊢ ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  →  ( ∃ 𝑔  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑔 ‘ 𝐴 )  =  0  →  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) ) | 
						
							| 24 | 6 23 | mpd | ⊢ ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  →  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 25 | 3 24 | jca | ⊢ ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  →  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) ) | 
						
							| 26 |  | simpl | ⊢ ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  →  𝑓  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑓  =  0𝑝  →  ( coeff ‘ 𝑓 )  =  ( coeff ‘ 0𝑝 ) ) | 
						
							| 28 |  | coe0 | ⊢ ( coeff ‘ 0𝑝 )  =  ( ℕ0  ×  { 0 } ) | 
						
							| 29 | 27 28 | eqtrdi | ⊢ ( 𝑓  =  0𝑝  →  ( coeff ‘ 𝑓 )  =  ( ℕ0  ×  { 0 } ) ) | 
						
							| 30 | 29 | fveq1d | ⊢ ( 𝑓  =  0𝑝  →  ( ( coeff ‘ 𝑓 ) ‘ 0 )  =  ( ( ℕ0  ×  { 0 } ) ‘ 0 ) ) | 
						
							| 31 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 32 |  | fvconst2g | ⊢ ( ( 0  ∈  ℕ0  ∧  0  ∈  ℕ0 )  →  ( ( ℕ0  ×  { 0 } ) ‘ 0 )  =  0 ) | 
						
							| 33 | 31 31 32 | mp2an | ⊢ ( ( ℕ0  ×  { 0 } ) ‘ 0 )  =  0 | 
						
							| 34 | 30 33 | eqtrdi | ⊢ ( 𝑓  =  0𝑝  →  ( ( coeff ‘ 𝑓 ) ‘ 0 )  =  0 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  ∧  𝑓  =  0𝑝 )  →  ( ( coeff ‘ 𝑓 ) ‘ 0 )  =  0 ) | 
						
							| 36 |  | neneq | ⊢ ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  →  ¬  ( ( coeff ‘ 𝑓 ) ‘ 0 )  =  0 ) | 
						
							| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  ∧  𝑓  =  0𝑝 )  →  ¬  ( ( coeff ‘ 𝑓 ) ‘ 0 )  =  0 ) | 
						
							| 38 | 35 37 | pm2.65da | ⊢ ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  →  ¬  𝑓  =  0𝑝 ) | 
						
							| 39 |  | velsn | ⊢ ( 𝑓  ∈  { 0𝑝 }  ↔  𝑓  =  0𝑝 ) | 
						
							| 40 | 38 39 | sylnibr | ⊢ ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  →  ¬  𝑓  ∈  { 0𝑝 } ) | 
						
							| 41 | 26 40 | eldifd | ⊢ ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  →  𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ) | 
						
							| 42 | 41 | adantrr | ⊢ ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ) | 
						
							| 43 |  | simprr | ⊢ ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 44 | 42 43 | jca | ⊢ ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  ( 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 45 | 44 | reximi2 | ⊢ ( ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 )  →  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 46 | 45 | anim2i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 47 |  | elaa | ⊢ ( 𝐴  ∈  𝔸  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 48 | 46 47 | sylibr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  𝐴  ∈  𝔸 ) | 
						
							| 49 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 50 |  | nfv | ⊢ Ⅎ 𝑓 𝐴  ∈  ℂ | 
						
							| 51 |  | nfre1 | ⊢ Ⅎ 𝑓 ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 52 | 50 51 | nfan | ⊢ Ⅎ 𝑓 ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 53 |  | nfv | ⊢ Ⅎ 𝑓 ¬  𝐴  ∈  { 0 } | 
						
							| 54 |  | simpl3r | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  ∧  𝐴  =  0 )  →  ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( 𝑓 ‘ 𝐴 )  =  ( 𝑓 ‘ 0 ) ) | 
						
							| 56 |  | eqid | ⊢ ( coeff ‘ 𝑓 )  =  ( coeff ‘ 𝑓 ) | 
						
							| 57 | 56 | coefv0 | ⊢ ( 𝑓  ∈  ( Poly ‘ ℤ )  →  ( 𝑓 ‘ 0 )  =  ( ( coeff ‘ 𝑓 ) ‘ 0 ) ) | 
						
							| 58 | 55 57 | sylan9eqr | ⊢ ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  𝐴  =  0 )  →  ( 𝑓 ‘ 𝐴 )  =  ( ( coeff ‘ 𝑓 ) ‘ 0 ) ) | 
						
							| 59 | 58 | adantlr | ⊢ ( ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  ∧  𝐴  =  0 )  →  ( 𝑓 ‘ 𝐴 )  =  ( ( coeff ‘ 𝑓 ) ‘ 0 ) ) | 
						
							| 60 |  | simplr | ⊢ ( ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  ∧  𝐴  =  0 )  →  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 ) | 
						
							| 61 | 59 60 | eqnetrd | ⊢ ( ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  ∧  𝐴  =  0 )  →  ( 𝑓 ‘ 𝐴 )  ≠  0 ) | 
						
							| 62 | 61 | neneqd | ⊢ ( ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0 )  ∧  𝐴  =  0 )  →  ¬  ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 63 | 62 | adantlrr | ⊢ ( ( ( 𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  ∧  𝐴  =  0 )  →  ¬  ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 64 | 63 | 3adantl1 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  ∧  𝐴  =  0 )  →  ¬  ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 65 | 54 64 | pm2.65da | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  ¬  𝐴  =  0 ) | 
						
							| 66 |  | elsng | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ∈  { 0 }  ↔  𝐴  =  0 ) ) | 
						
							| 67 | 66 | biimpa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ∈  { 0 } )  →  𝐴  =  0 ) | 
						
							| 68 | 67 | 3ad2antl1 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  ∧  𝐴  ∈  { 0 } )  →  𝐴  =  0 ) | 
						
							| 69 | 65 68 | mtand | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑓  ∈  ( Poly ‘ ℤ )  ∧  ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  ¬  𝐴  ∈  { 0 } ) | 
						
							| 70 | 69 | 3exp | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑓  ∈  ( Poly ‘ ℤ )  →  ( ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 )  →  ¬  𝐴  ∈  { 0 } ) ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  ( 𝑓  ∈  ( Poly ‘ ℤ )  →  ( ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 )  →  ¬  𝐴  ∈  { 0 } ) ) ) | 
						
							| 72 | 52 53 71 | rexlimd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  ( ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 )  →  ¬  𝐴  ∈  { 0 } ) ) | 
						
							| 73 | 49 72 | mpd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  ¬  𝐴  ∈  { 0 } ) | 
						
							| 74 | 48 73 | eldifd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) )  →  𝐴  ∈  ( 𝔸  ∖  { 0 } ) ) | 
						
							| 75 | 25 74 | impbii | ⊢ ( 𝐴  ∈  ( 𝔸  ∖  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑓 ) ‘ 0 )  ≠  0  ∧  ( 𝑓 ‘ 𝐴 )  =  0 ) ) ) |