Metamath Proof Explorer


Theorem elab2

Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995)

Ref Expression
Hypotheses elab2.1 𝐴 ∈ V
elab2.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
elab2.3 𝐵 = { 𝑥𝜑 }
Assertion elab2 ( 𝐴𝐵𝜓 )

Proof

Step Hyp Ref Expression
1 elab2.1 𝐴 ∈ V
2 elab2.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 elab2.3 𝐵 = { 𝑥𝜑 }
4 2 3 elab2g ( 𝐴 ∈ V → ( 𝐴𝐵𝜓 ) )
5 1 4 ax-mp ( 𝐴𝐵𝜓 )