Metamath Proof Explorer
Description: Membership in a class abstraction using implicit substitution.
(Contributed by NM, 10-Nov-2000) (Revised by AV, 16-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
elab3.1 |
⊢ ( 𝜓 → 𝐴 ∈ 𝑉 ) |
|
|
elab3.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
elab3 |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elab3.1 |
⊢ ( 𝜓 → 𝐴 ∈ 𝑉 ) |
2 |
|
elab3.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
2
|
elab3g |
⊢ ( ( 𝜓 → 𝐴 ∈ 𝑉 ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |