Metamath Proof Explorer


Theorem elab3g

Description: Membership in a class abstraction, with a weaker antecedent than elabg . (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypothesis elab3g.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion elab3g ( ( 𝜓𝐴𝐵 ) → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 elab3g.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 elabg ( 𝐴 ∈ { 𝑥𝜑 } → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )
3 2 ibi ( 𝐴 ∈ { 𝑥𝜑 } → 𝜓 )
4 pm2.21 ( ¬ 𝜓 → ( 𝜓𝐴 ∈ { 𝑥𝜑 } ) )
5 3 4 impbid2 ( ¬ 𝜓 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )
6 1 elabg ( 𝐴𝐵 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )
7 5 6 ja ( ( 𝜓𝐴𝐵 ) → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )