Description: Membership in a class abstraction, with a weaker antecedent than elabg . (Contributed by NM, 29-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elab3g.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | elab3g | ⊢ ( ( 𝜓 → 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3g.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | elabg | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
3 | 2 | ibi | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } → 𝜓 ) |
4 | pm2.21 | ⊢ ( ¬ 𝜓 → ( 𝜓 → 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
5 | 3 4 | impbid2 | ⊢ ( ¬ 𝜓 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
6 | 1 | elabg | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
7 | 5 6 | ja | ⊢ ( ( 𝜓 → 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |