Description: Membership in a class abstraction, with a weaker antecedent than elabgf . (Contributed by NM, 6-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elab3gf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| elab3gf.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| elab3gf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | elab3gf | ⊢ ( ( 𝜓 → 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3gf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | elab3gf.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | elab3gf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 2 3 | elabgf | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| 5 | 4 | ibi | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } → 𝜓 ) |
| 6 | pm2.21 | ⊢ ( ¬ 𝜓 → ( 𝜓 → 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
| 7 | 5 6 | impbid2 | ⊢ ( ¬ 𝜓 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| 8 | 1 2 3 | elabgf | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| 9 | 7 8 | ja | ⊢ ( ( 𝜓 → 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |