Metamath Proof Explorer
Description: Membership in a class abstraction, using implicit substitution.
(Contributed by NM, 17-Oct-2012)
|
|
Ref |
Expression |
|
Hypotheses |
elab4g.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
elab4g.2 |
⊢ 𝐵 = { 𝑥 ∣ 𝜑 } |
|
Assertion |
elab4g |
⊢ ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elab4g.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
elab4g.2 |
⊢ 𝐵 = { 𝑥 ∣ 𝜑 } |
3 |
|
elex |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) |
4 |
1 2
|
elab2g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝐵 ↔ 𝜓 ) ) |
5 |
3 4
|
biadanii |
⊢ ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝜓 ) ) |