Description: Membership in a class abstraction. Class version of sb6 . (Contributed by SN, 5-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | elab6g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
2 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) | |
3 | 2 | imbi1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
4 | 3 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
5 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
6 | sb6 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) | |
7 | 5 6 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
8 | 1 4 7 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |