Metamath Proof Explorer


Theorem elab6g

Description: Membership in a class abstraction. Class version of sb6 . (Contributed by SN, 5-Oct-2024)

Ref Expression
Assertion elab6g ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑦 = 𝐴 → ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝐴 ∈ { 𝑥𝜑 } ) )
2 eqeq2 ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦𝑥 = 𝐴 ) )
3 2 imbi1d ( 𝑦 = 𝐴 → ( ( 𝑥 = 𝑦𝜑 ) ↔ ( 𝑥 = 𝐴𝜑 ) ) )
4 3 albidv ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
5 df-clab ( 𝑦 ∈ { 𝑥𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 )
6 sb6 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
7 5 6 bitri ( 𝑦 ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
8 1 4 7 vtoclbg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )