Metamath Proof Explorer


Theorem elabd

Description: Explicit demonstration the class { x | ps } is not empty by the example A . (Contributed by RP, 12-Aug-2020) (Revised by AV, 23-Mar-2024)

Ref Expression
Hypotheses elabd.1 ( 𝜑𝐴𝑉 )
elabd.2 ( 𝜑𝜒 )
elabd.3 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
Assertion elabd ( 𝜑𝐴 ∈ { 𝑥𝜓 } )

Proof

Step Hyp Ref Expression
1 elabd.1 ( 𝜑𝐴𝑉 )
2 elabd.2 ( 𝜑𝜒 )
3 elabd.3 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
4 3 elabg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜓 } ↔ 𝜒 ) )
5 1 4 syl ( 𝜑 → ( 𝐴 ∈ { 𝑥𝜓 } ↔ 𝜒 ) )
6 2 5 mpbird ( 𝜑𝐴 ∈ { 𝑥𝜓 } )