Metamath Proof Explorer
Description: Explicit demonstration the class { x | ps } is not empty by the
example A . (Contributed by RP, 12-Aug-2020) (Revised by AV, 23-Mar-2024)
|
|
Ref |
Expression |
|
Hypotheses |
elabd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
|
elabd.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
elabd.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
elabd |
⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elabd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
elabd.2 |
⊢ ( 𝜑 → 𝜒 ) |
3 |
|
elabd.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) |
4 |
3
|
elabg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜒 ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜒 ) ) |
6 |
2 5
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) |