| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elabd2.ex | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | elabd2.eq | ⊢ ( 𝜑  →  𝐵  =  { 𝑥  ∣  𝜓 } ) | 
						
							| 3 |  | elabd2.is | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 4 | 2 | eleq2d | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝐵  ↔  𝐴  ∈  { 𝑥  ∣  𝜓 } ) ) | 
						
							| 5 |  | elab6g | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∈  { 𝑥  ∣  𝜓 }  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 ) ) ) | 
						
							| 6 | 4 5 | sylan9bb | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∈  𝐵  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 ) ) ) | 
						
							| 7 |  | elisset | ⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 8 | 3 | pm5.74da | ⊢ ( 𝜑  →  ( ( 𝑥  =  𝐴  →  𝜓 )  ↔  ( 𝑥  =  𝐴  →  𝜒 ) ) ) | 
						
							| 9 | 8 | albidv | ⊢ ( 𝜑  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜒 ) ) ) | 
						
							| 10 |  | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜒 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝜒 ) ) | 
						
							| 11 | 9 10 | bitrdi | ⊢ ( 𝜑  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝜒 ) ) ) | 
						
							| 12 |  | pm5.5 | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( ( ∃ 𝑥 𝑥  =  𝐴  →  𝜒 )  ↔  𝜒 ) ) | 
						
							| 13 | 11 12 | sylan9bb | ⊢ ( ( 𝜑  ∧  ∃ 𝑥 𝑥  =  𝐴 )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  𝜒 ) ) | 
						
							| 14 | 7 13 | sylan2 | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑉 )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  𝜒 ) ) | 
						
							| 15 | 6 14 | bitrd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∈  𝐵  ↔  𝜒 ) ) | 
						
							| 16 | 1 15 | mpdan | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝐵  ↔  𝜒 ) ) |