| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elabg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
elab6g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 3 |
1
|
pm5.74i |
⊢ ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 4 |
3
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 5 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) |
| 7 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 8 |
|
pm5.5 |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) |
| 10 |
6 9
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| 11 |
2 10
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |