| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elab6g |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 3 |
|
elisset |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 4 |
|
biimp |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
| 5 |
4
|
imim3i |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 6 |
5
|
al2imi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 7 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) |
| 8 |
6 7
|
imbitrdi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 9 |
3 8
|
syl7 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) |
| 10 |
9
|
com3r |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → 𝜓 ) ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → 𝜓 ) ) |
| 12 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) |
| 13 |
12
|
imim2i |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
| 14 |
13
|
com23 |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 15 |
14
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 16 |
|
19.21v |
⊢ ( ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 17 |
15 16
|
sylib |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 19 |
11 18
|
impbid |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| 20 |
2 19
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |