Step |
Hyp |
Ref |
Expression |
1 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } |
3 |
2
|
nfel2 |
⊢ Ⅎ 𝑥 𝐴 ∈ { 𝑥 ∣ 𝜑 } |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
5 |
3 4
|
nfbi |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
6 |
|
pm5.5 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) ↔ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) ) |
7 |
1 5 6
|
spcgf |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) ) |
8 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
9 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) ) |
10 |
8 9
|
bitr3id |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) ) |
11 |
10
|
bibi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) ) |
12 |
11
|
biimpd |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜓 ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) ) |
13 |
12
|
a2i |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) ) |
14 |
13
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) ) |
15 |
7 14
|
impel |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |