Metamath Proof Explorer


Theorem elabrexg

Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elabrexg ( ( 𝑥𝐴𝐵𝑉 ) → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } )

Proof

Step Hyp Ref Expression
1 tru
2 csbeq1a ( 𝑥 = 𝑧𝐵 = 𝑧 / 𝑥 𝐵 )
3 2 equcoms ( 𝑧 = 𝑥𝐵 = 𝑧 / 𝑥 𝐵 )
4 trud ( 𝑧 = 𝑥 → ⊤ )
5 3 4 2thd ( 𝑧 = 𝑥 → ( 𝐵 = 𝑧 / 𝑥 𝐵 ↔ ⊤ ) )
6 5 rspcev ( ( 𝑥𝐴 ∧ ⊤ ) → ∃ 𝑧𝐴 𝐵 = 𝑧 / 𝑥 𝐵 )
7 1 6 mpan2 ( 𝑥𝐴 → ∃ 𝑧𝐴 𝐵 = 𝑧 / 𝑥 𝐵 )
8 7 adantr ( ( 𝑥𝐴𝐵𝑉 ) → ∃ 𝑧𝐴 𝐵 = 𝑧 / 𝑥 𝐵 )
9 eqeq1 ( 𝑦 = 𝐵 → ( 𝑦 = 𝑧 / 𝑥 𝐵𝐵 = 𝑧 / 𝑥 𝐵 ) )
10 9 rexbidv ( 𝑦 = 𝐵 → ( ∃ 𝑧𝐴 𝑦 = 𝑧 / 𝑥 𝐵 ↔ ∃ 𝑧𝐴 𝐵 = 𝑧 / 𝑥 𝐵 ) )
11 10 elabg ( 𝐵𝑉 → ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = 𝑧 / 𝑥 𝐵 } ↔ ∃ 𝑧𝐴 𝐵 = 𝑧 / 𝑥 𝐵 ) )
12 11 adantl ( ( 𝑥𝐴𝐵𝑉 ) → ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = 𝑧 / 𝑥 𝐵 } ↔ ∃ 𝑧𝐴 𝐵 = 𝑧 / 𝑥 𝐵 ) )
13 8 12 mpbird ( ( 𝑥𝐴𝐵𝑉 ) → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = 𝑧 / 𝑥 𝐵 } )
14 nfv 𝑧 𝑦 = 𝐵
15 nfcsb1v 𝑥 𝑧 / 𝑥 𝐵
16 15 nfeq2 𝑥 𝑦 = 𝑧 / 𝑥 𝐵
17 2 eqeq2d ( 𝑥 = 𝑧 → ( 𝑦 = 𝐵𝑦 = 𝑧 / 𝑥 𝐵 ) )
18 14 16 17 cbvrexw ( ∃ 𝑥𝐴 𝑦 = 𝐵 ↔ ∃ 𝑧𝐴 𝑦 = 𝑧 / 𝑥 𝐵 )
19 18 abbii { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } = { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = 𝑧 / 𝑥 𝐵 }
20 13 19 eleqtrrdi ( ( 𝑥𝐴𝐵𝑉 ) → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } )