| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tru | ⊢ ⊤ | 
						
							| 2 |  | csbeq1a | ⊢ ( 𝑥  =  𝑧  →  𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) | 
						
							| 3 | 2 | equcoms | ⊢ ( 𝑧  =  𝑥  →  𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) | 
						
							| 4 |  | trud | ⊢ ( 𝑧  =  𝑥  →  ⊤ ) | 
						
							| 5 | 3 4 | 2thd | ⊢ ( 𝑧  =  𝑥  →  ( 𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ↔  ⊤ ) ) | 
						
							| 6 | 5 | rspcev | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ⊤ )  →  ∃ 𝑧  ∈  𝐴 𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) | 
						
							| 7 | 1 6 | mpan2 | ⊢ ( 𝑥  ∈  𝐴  →  ∃ 𝑧  ∈  𝐴 𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  𝑉 )  →  ∃ 𝑧  ∈  𝐴 𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) | 
						
							| 9 |  | eqeq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ↔  𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∃ 𝑧  ∈  𝐴 𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ↔  ∃ 𝑧  ∈  𝐴 𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 11 | 10 | elabg | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐵  ∈  { 𝑦  ∣  ∃ 𝑧  ∈  𝐴 𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 }  ↔  ∃ 𝑧  ∈  𝐴 𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  𝑉 )  →  ( 𝐵  ∈  { 𝑦  ∣  ∃ 𝑧  ∈  𝐴 𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 }  ↔  ∃ 𝑧  ∈  𝐴 𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 13 | 8 12 | mpbird | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  𝑉 )  →  𝐵  ∈  { 𝑦  ∣  ∃ 𝑧  ∈  𝐴 𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 } ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑧 𝑦  =  𝐵 | 
						
							| 15 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐵 | 
						
							| 16 | 15 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 | 
						
							| 17 | 2 | eqeq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  =  𝐵  ↔  𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 18 | 14 16 17 | cbvrexw | ⊢ ( ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵  ↔  ∃ 𝑧  ∈  𝐴 𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) | 
						
							| 19 | 18 | abbii | ⊢ { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  =  { 𝑦  ∣  ∃ 𝑧  ∈  𝐴 𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 } | 
						
							| 20 | 13 19 | eleqtrrdi | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  𝑉 )  →  𝐵  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 } ) |