Metamath Proof Explorer
		
		
		
		Description:  Class substitution in an image set.  (Contributed by Thierry Arnoux, 30-Dec-2016)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						elabreximdv.1 | 
						⊢ ( 𝐴  =  𝐵  →  ( 𝜒  ↔  𝜓 ) )  | 
					
					
						 | 
						 | 
						elabreximdv.2 | 
						⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
					
					
						 | 
						 | 
						elabreximdv.3 | 
						⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝜓 )  | 
					
				
					 | 
					Assertion | 
					elabreximdv | 
					⊢  ( ( 𝜑  ∧  𝐴  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐶 𝑦  =  𝐵 } )  →  𝜒 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elabreximdv.1 | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝜒  ↔  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elabreximdv.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							elabreximdv.3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝜓 )  | 
						
						
							| 4 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 5 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝜒  | 
						
						
							| 6 | 
							
								4 5 1 2 3
							 | 
							elabreximd | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐶 𝑦  =  𝐵 } )  →  𝜒 )  |