Step |
Hyp |
Ref |
Expression |
1 |
|
ela |
⊢ ( 𝐴 ∈ HAtoms ↔ ( 𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴 ) ) |
2 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
3 |
|
cvbr2 |
⊢ ( ( 0ℋ ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 0ℋ ⋖ℋ 𝐴 ↔ ( 0ℋ ⊊ 𝐴 ∧ ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ) ) ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ ⋖ℋ 𝐴 ↔ ( 0ℋ ⊊ 𝐴 ∧ ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ) ) ) |
5 |
|
ch0pss |
⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ ) ) |
6 |
|
ch0pss |
⊢ ( 𝑥 ∈ Cℋ → ( 0ℋ ⊊ 𝑥 ↔ 𝑥 ≠ 0ℋ ) ) |
7 |
6
|
imbi1d |
⊢ ( 𝑥 ∈ Cℋ → ( ( 0ℋ ⊊ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 ∈ Cℋ → ( ( 𝑥 ⊆ 𝐴 → ( 0ℋ ⊊ 𝑥 → 𝑥 = 𝐴 ) ) ↔ ( 𝑥 ⊆ 𝐴 → ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) ) ) |
9 |
|
impexp |
⊢ ( ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ( 0ℋ ⊊ 𝑥 → ( 𝑥 ⊆ 𝐴 → 𝑥 = 𝐴 ) ) ) |
10 |
|
bi2.04 |
⊢ ( ( 0ℋ ⊊ 𝑥 → ( 𝑥 ⊆ 𝐴 → 𝑥 = 𝐴 ) ) ↔ ( 𝑥 ⊆ 𝐴 → ( 0ℋ ⊊ 𝑥 → 𝑥 = 𝐴 ) ) ) |
11 |
9 10
|
bitri |
⊢ ( ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 → ( 0ℋ ⊊ 𝑥 → 𝑥 = 𝐴 ) ) ) |
12 |
|
orcom |
⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ↔ ( 𝑥 = 0ℋ ∨ 𝑥 = 𝐴 ) ) |
13 |
|
neor |
⊢ ( ( 𝑥 = 0ℋ ∨ 𝑥 = 𝐴 ) ↔ ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) |
14 |
12 13
|
bitri |
⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ↔ ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) |
15 |
14
|
imbi2i |
⊢ ( ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ↔ ( 𝑥 ⊆ 𝐴 → ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) ) |
16 |
8 11 15
|
3bitr4g |
⊢ ( 𝑥 ∈ Cℋ → ( ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) |
17 |
16
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) |
18 |
17
|
a1i |
⊢ ( 𝐴 ∈ Cℋ → ( ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) |
19 |
5 18
|
anbi12d |
⊢ ( 𝐴 ∈ Cℋ → ( ( 0ℋ ⊊ 𝐴 ∧ ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ) ↔ ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) ) |
20 |
4 19
|
bitr2d |
⊢ ( 𝐴 ∈ Cℋ → ( ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ↔ 0ℋ ⋖ℋ 𝐴 ) ) |
21 |
20
|
pm5.32i |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) ↔ ( 𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴 ) ) |
22 |
1 21
|
bitr4i |
⊢ ( 𝐴 ∈ HAtoms ↔ ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) ) |