Metamath Proof Explorer
Description: Utility theorem: reverse closure for any structure defined as a
function. (Contributed by Stefan O'Rear, 24-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
elbasfv.s |
⊢ 𝑆 = ( 𝐹 ‘ 𝑍 ) |
|
|
elbasfv.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
|
Assertion |
elbasfv |
⊢ ( 𝑋 ∈ 𝐵 → 𝑍 ∈ V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elbasfv.s |
⊢ 𝑆 = ( 𝐹 ‘ 𝑍 ) |
2 |
|
elbasfv.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
n0i |
⊢ ( 𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅ ) |
4 |
|
fvprc |
⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 ‘ 𝑍 ) = ∅ ) |
5 |
1 4
|
eqtrid |
⊢ ( ¬ 𝑍 ∈ V → 𝑆 = ∅ ) |
6 |
5
|
fveq2d |
⊢ ( ¬ 𝑍 ∈ V → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) ) |
7 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
8 |
6 2 7
|
3eqtr4g |
⊢ ( ¬ 𝑍 ∈ V → 𝐵 = ∅ ) |
9 |
3 8
|
nsyl2 |
⊢ ( 𝑋 ∈ 𝐵 → 𝑍 ∈ V ) |