Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elbasov.o | ⊢ Rel dom 𝑂 | |
elbasov.s | ⊢ 𝑆 = ( 𝑋 𝑂 𝑌 ) | ||
elbasov.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
Assertion | elbasov | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbasov.o | ⊢ Rel dom 𝑂 | |
2 | elbasov.s | ⊢ 𝑆 = ( 𝑋 𝑂 𝑌 ) | |
3 | elbasov.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
4 | n0i | ⊢ ( 𝐴 ∈ 𝐵 → ¬ 𝐵 = ∅ ) | |
5 | 1 | ovprc | ⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 𝑂 𝑌 ) = ∅ ) |
6 | 2 5 | eqtrid | ⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑆 = ∅ ) |
7 | 6 | fveq2d | ⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) ) |
8 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
9 | 7 3 8 | 3eqtr4g | ⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝐵 = ∅ ) |
10 | 4 9 | nsyl2 | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |