Metamath Proof Explorer


Theorem elbasov

Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses elbasov.o Rel dom 𝑂
elbasov.s 𝑆 = ( 𝑋 𝑂 𝑌 )
elbasov.b 𝐵 = ( Base ‘ 𝑆 )
Assertion elbasov ( 𝐴𝐵 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )

Proof

Step Hyp Ref Expression
1 elbasov.o Rel dom 𝑂
2 elbasov.s 𝑆 = ( 𝑋 𝑂 𝑌 )
3 elbasov.b 𝐵 = ( Base ‘ 𝑆 )
4 n0i ( 𝐴𝐵 → ¬ 𝐵 = ∅ )
5 1 ovprc ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 𝑂 𝑌 ) = ∅ )
6 2 5 eqtrid ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑆 = ∅ )
7 6 fveq2d ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) )
8 base0 ∅ = ( Base ‘ ∅ )
9 7 3 8 3eqtr4g ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝐵 = ∅ )
10 4 9 nsyl2 ( 𝐴𝐵 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )