Metamath Proof Explorer


Theorem elbdop

Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elbdop ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop𝑇 ) < +∞ ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑡 = 𝑇 → ( normop𝑡 ) = ( normop𝑇 ) )
2 1 breq1d ( 𝑡 = 𝑇 → ( ( normop𝑡 ) < +∞ ↔ ( normop𝑇 ) < +∞ ) )
3 df-bdop BndLinOp = { 𝑡 ∈ LinOp ∣ ( normop𝑡 ) < +∞ }
4 2 3 elrab2 ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop𝑇 ) < +∞ ) )