Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elbdop | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) < +∞ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( normop ‘ 𝑡 ) = ( normop ‘ 𝑇 ) ) | |
2 | 1 | breq1d | ⊢ ( 𝑡 = 𝑇 → ( ( normop ‘ 𝑡 ) < +∞ ↔ ( normop ‘ 𝑇 ) < +∞ ) ) |
3 | df-bdop | ⊢ BndLinOp = { 𝑡 ∈ LinOp ∣ ( normop ‘ 𝑡 ) < +∞ } | |
4 | 2 3 | elrab2 | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) < +∞ ) ) |