Metamath Proof Explorer


Theorem elbdop2

Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion elbdop2 ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop𝑇 ) ∈ ℝ ) )

Proof

Step Hyp Ref Expression
1 elbdop ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop𝑇 ) < +∞ ) )
2 lnopf ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ )
3 nmopreltpnf ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) ∈ ℝ ↔ ( normop𝑇 ) < +∞ ) )
4 2 3 syl ( 𝑇 ∈ LinOp → ( ( normop𝑇 ) ∈ ℝ ↔ ( normop𝑇 ) < +∞ ) )
5 4 pm5.32i ( ( 𝑇 ∈ LinOp ∧ ( normop𝑇 ) ∈ ℝ ) ↔ ( 𝑇 ∈ LinOp ∧ ( normop𝑇 ) < +∞ ) )
6 1 5 bitr4i ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop𝑇 ) ∈ ℝ ) )