Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elbdop2 | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbdop | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) < +∞ ) ) | |
2 | lnopf | ⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) | |
3 | nmopreltpnf | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) < +∞ ) ) | |
4 | 2 3 | syl | ⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) < +∞ ) ) |
5 | 4 | pm5.32i | ⊢ ( ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) < +∞ ) ) |
6 | 1 5 | bitr4i | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ) |