| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpxr | ⊢ ( 𝑅  ∈  ℝ+  →  𝑅  ∈  ℝ* ) | 
						
							| 2 |  | blcomps | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑅  ∈  ℝ* )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐵  ∈  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 )  ↔  𝐴  ∈  ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 ) ) ) | 
						
							| 3 | 1 2 | sylanl2 | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐵  ∈  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 )  ↔  𝐴  ∈  ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 ) ) ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝐷  ∈  ( PsMet ‘ 𝑋 ) ) | 
						
							| 5 |  | simprr | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝑅  ∈  ℝ+ ) | 
						
							| 7 |  | blval2 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐵  ∈  𝑋  ∧  𝑅  ∈  ℝ+ )  →  ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 )  =  ( ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) )  “  { 𝐵 } ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐵  ∈  𝑋  ∧  𝑅  ∈  ℝ+ )  →  ( 𝐴  ∈  ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 )  ↔  𝐴  ∈  ( ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) )  “  { 𝐵 } ) ) ) | 
						
							| 9 | 4 5 6 8 | syl3anc | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴  ∈  ( 𝐵 ( ball ‘ 𝐷 ) 𝑅 )  ↔  𝐴  ∈  ( ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) )  “  { 𝐵 } ) ) ) | 
						
							| 10 |  | elimasng | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  ( ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) )  “  { 𝐵 } )  ↔  〈 𝐵 ,  𝐴 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) ) ) ) | 
						
							| 11 |  | df-br | ⊢ ( 𝐵 ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) ) 𝐴  ↔  〈 𝐵 ,  𝐴 〉  ∈  ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) ) ) | 
						
							| 12 | 10 11 | bitr4di | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  ( ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) )  “  { 𝐵 } )  ↔  𝐵 ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) ) 𝐴 ) ) | 
						
							| 13 | 12 | ancoms | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ∈  ( ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) )  “  { 𝐵 } )  ↔  𝐵 ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) ) 𝐴 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴  ∈  ( ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) )  “  { 𝐵 } )  ↔  𝐵 ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) ) 𝐴 ) ) | 
						
							| 15 | 3 9 14 | 3bitrd | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐵  ∈  ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 )  ↔  𝐵 ( ◡ 𝐷  “  ( 0 [,) 𝑅 ) ) 𝐴 ) ) |