| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elcls3.1 |
⊢ ( 𝜑 → 𝐽 = ( topGen ‘ 𝐵 ) ) |
| 2 |
|
elcls3.2 |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 3 |
|
elcls3.3 |
⊢ ( 𝜑 → 𝐵 ∈ TopBases ) |
| 4 |
|
elcls3.4 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 5 |
|
elcls3.5 |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 6 |
|
tgcl |
⊢ ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 8 |
1 7
|
eqeltrd |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 9 |
4 2
|
sseqtrd |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 10 |
5 2
|
eleqtrd |
⊢ ( 𝜑 → 𝑃 ∈ ∪ 𝐽 ) |
| 11 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 12 |
11
|
elcls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 13 |
8 9 10 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 14 |
|
bastg |
⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 15 |
3 14
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 16 |
15 1
|
sseqtrrd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐽 ) |
| 17 |
16
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐽 ) ) |
| 18 |
17
|
imim1d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 → ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 19 |
18
|
ralimdv2 |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) → ∀ 𝑦 ∈ 𝐵 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 20 |
|
eleq2w |
⊢ ( 𝑦 = 𝑥 → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑥 ) ) |
| 21 |
|
ineq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∩ 𝑆 ) = ( 𝑥 ∩ 𝑆 ) ) |
| 22 |
21
|
neeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∩ 𝑆 ) ≠ ∅ ↔ ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) |
| 23 |
20 22
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ↔ ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 24 |
23
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) |
| 25 |
19 24
|
imbitrdi |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) → ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 26 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) |
| 27 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → 𝐽 = ( topGen ‘ 𝐵 ) ) |
| 28 |
26 27
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → 𝑦 ∈ ( topGen ‘ 𝐵 ) ) |
| 29 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → 𝑃 ∈ 𝑦 ) |
| 30 |
|
tg2 |
⊢ ( ( 𝑦 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑃 ∈ 𝑦 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
| 31 |
28 29 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
| 32 |
|
eleq2w |
⊢ ( 𝑥 = 𝑧 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧 ) ) |
| 33 |
|
ineq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∩ 𝑆 ) = ( 𝑧 ∩ 𝑆 ) ) |
| 34 |
33
|
neeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∩ 𝑆 ) ≠ ∅ ↔ ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 35 |
32 34
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ↔ ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 36 |
35
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 37 |
36
|
imp |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑧 ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) |
| 38 |
|
ssdisj |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ ( 𝑦 ∩ 𝑆 ) = ∅ ) → ( 𝑧 ∩ 𝑆 ) = ∅ ) |
| 39 |
38
|
ex |
⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∩ 𝑆 ) = ∅ → ( 𝑧 ∩ 𝑆 ) = ∅ ) ) |
| 40 |
39
|
necon3d |
⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑧 ∩ 𝑆 ) ≠ ∅ → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 41 |
37 40
|
syl5com |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑧 ) → ( 𝑧 ⊆ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 42 |
41
|
exp31 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑧 ∈ 𝐵 → ( 𝑃 ∈ 𝑧 → ( 𝑧 ⊆ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 43 |
42
|
imp4a |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑧 ∈ 𝐵 → ( ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 44 |
43
|
rexlimdv |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 45 |
44
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → ( ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 46 |
31 45
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) |
| 47 |
46
|
exp43 |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑦 ∈ 𝐽 → ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 48 |
47
|
ralrimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 49 |
25 48
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 50 |
13 49
|
bitrd |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |