Step |
Hyp |
Ref |
Expression |
1 |
|
cncfval |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } ) |
2 |
1
|
eleq2d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } ) ) |
3 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
4 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
5 |
3 4
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) ) |
7 |
6
|
breq1d |
⊢ ( 𝑓 = 𝐹 → ( ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
9 |
8
|
rexralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
10 |
9
|
2ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
11 |
10
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } ↔ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
12 |
2 11
|
bitrdi |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) |
13 |
|
cnex |
⊢ ℂ ∈ V |
14 |
13
|
ssex |
⊢ ( 𝐵 ⊆ ℂ → 𝐵 ∈ V ) |
15 |
13
|
ssex |
⊢ ( 𝐴 ⊆ ℂ → 𝐴 ∈ V ) |
16 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
17 |
14 15 16
|
syl2anr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
18 |
17
|
anbi1d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) |
19 |
12 18
|
bitrd |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) |