Step |
Hyp |
Ref |
Expression |
1 |
|
elcncf1i.1 |
⊢ 𝐹 : 𝐴 ⟶ 𝐵 |
2 |
|
elcncf1i.2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) → 𝑍 ∈ ℝ+ ) |
3 |
|
elcncf1i.3 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
4 |
1
|
a1i |
⊢ ( ⊤ → 𝐹 : 𝐴 ⟶ 𝐵 ) |
5 |
2
|
a1i |
⊢ ( ⊤ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) → 𝑍 ∈ ℝ+ ) ) |
6 |
3
|
a1i |
⊢ ( ⊤ → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
7 |
4 5 6
|
elcncf1di |
⊢ ( ⊤ → ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) ) |
8 |
7
|
mptru |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) |