Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑤 ) = ( 𝑇 ‘ 𝑤 ) ) |
2 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
3 |
1 2
|
oveq12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑡 = 𝑇 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) ) |
5 |
4
|
breq1d |
⊢ ( 𝑡 = 𝑇 → ( ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑡 = 𝑇 → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
7 |
6
|
rexralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
8 |
7
|
2ralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
9 |
|
df-cnfn |
⊢ ContFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |
10 |
8 9
|
elrab2 |
⊢ ( 𝑇 ∈ ContFn ↔ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
11 |
|
cnex |
⊢ ℂ ∈ V |
12 |
|
ax-hilex |
⊢ ℋ ∈ V |
13 |
11 12
|
elmap |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ ) |
14 |
13
|
anbi1i |
⊢ ( ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
15 |
10 14
|
bitri |
⊢ ( 𝑇 ∈ ContFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |