Metamath Proof Explorer


Theorem elcntz

Description: Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses cntzfval.b 𝐵 = ( Base ‘ 𝑀 )
cntzfval.p + = ( +g𝑀 )
cntzfval.z 𝑍 = ( Cntz ‘ 𝑀 )
Assertion elcntz ( 𝑆𝐵 → ( 𝐴 ∈ ( 𝑍𝑆 ) ↔ ( 𝐴𝐵 ∧ ∀ 𝑦𝑆 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 cntzfval.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzfval.p + = ( +g𝑀 )
3 cntzfval.z 𝑍 = ( Cntz ‘ 𝑀 )
4 1 2 3 cntzval ( 𝑆𝐵 → ( 𝑍𝑆 ) = { 𝑥𝐵 ∣ ∀ 𝑦𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } )
5 4 eleq2d ( 𝑆𝐵 → ( 𝐴 ∈ ( 𝑍𝑆 ) ↔ 𝐴 ∈ { 𝑥𝐵 ∣ ∀ 𝑦𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) )
6 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 + 𝑦 ) = ( 𝐴 + 𝑦 ) )
7 oveq2 ( 𝑥 = 𝐴 → ( 𝑦 + 𝑥 ) = ( 𝑦 + 𝐴 ) )
8 6 7 eqeq12d ( 𝑥 = 𝐴 → ( ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) )
9 8 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ∀ 𝑦𝑆 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) )
10 9 elrab ( 𝐴 ∈ { 𝑥𝐵 ∣ ∀ 𝑦𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ↔ ( 𝐴𝐵 ∧ ∀ 𝑦𝑆 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) )
11 5 10 bitrdi ( 𝑆𝐵 → ( 𝐴 ∈ ( 𝑍𝑆 ) ↔ ( 𝐴𝐵 ∧ ∀ 𝑦𝑆 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) )