| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzfval.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
cntzfval.p |
⊢ + = ( +g ‘ 𝑀 ) |
| 3 |
|
cntzfval.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
| 4 |
1 2 3
|
cntzval |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 5 |
4
|
eleq2d |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ↔ 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
| 6 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 + 𝑦 ) = ( 𝐴 + 𝑦 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 + 𝑥 ) = ( 𝑦 + 𝐴 ) ) |
| 8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) |
| 9 |
8
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) |
| 10 |
9
|
elrab |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) |
| 11 |
5 10
|
bitrdi |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) ) |