Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 24-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnv | ⊢ ( 𝐴 ∈ ◡ 𝑅 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝑦 𝑅 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv | ⊢ ◡ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 𝑅 𝑥 } | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ ◡ 𝑅 ↔ 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 𝑅 𝑥 } ) |
| 3 | elopab | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 𝑅 𝑥 } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝑦 𝑅 𝑥 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝐴 ∈ ◡ 𝑅 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝑦 𝑅 𝑥 ) ) |