Metamath Proof Explorer


Theorem elcnv

Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 24-Mar-1998)

Ref Expression
Assertion elcnv ( 𝐴 𝑅 ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑦 𝑅 𝑥 ) )

Proof

Step Hyp Ref Expression
1 df-cnv 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 𝑅 𝑥 }
2 1 eleq2i ( 𝐴 𝑅𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 𝑅 𝑥 } )
3 elopab ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 𝑅 𝑥 } ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑦 𝑅 𝑥 ) )
4 2 3 bitri ( 𝐴 𝑅 ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑦 𝑅 𝑥 ) )