Metamath Proof Explorer


Theorem elcnv2

Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion elcnv2 ( 𝐴 𝑅 ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 elcnv ( 𝐴 𝑅 ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑦 𝑅 𝑥 ) )
2 df-br ( 𝑦 𝑅 𝑥 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝑅 )
3 2 anbi2i ( ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝑅 ) )
4 3 2exbii ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑦 𝑅 𝑥 ) ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝑅 ) )
5 1 4 bitri ( 𝐴 𝑅 ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝑅 ) )