| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfcnvrefrels3 | 
							⊢  CnvRefRels   =  { 𝑟  ∈   Rels   ∣  ∀ 𝑥  ∈  dom  𝑟 ∀ 𝑦  ∈  ran  𝑟 ( 𝑥 𝑟 𝑦  →  𝑥  =  𝑦 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							dmeq | 
							⊢ ( 𝑟  =  𝑅  →  dom  𝑟  =  dom  𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							rneq | 
							⊢ ( 𝑟  =  𝑅  →  ran  𝑟  =  ran  𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							breq | 
							⊢ ( 𝑟  =  𝑅  →  ( 𝑥 𝑟 𝑦  ↔  𝑥 𝑅 𝑦 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							imbi1d | 
							⊢ ( 𝑟  =  𝑅  →  ( ( 𝑥 𝑟 𝑦  →  𝑥  =  𝑦 )  ↔  ( 𝑥 𝑅 𝑦  →  𝑥  =  𝑦 ) ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							raleqbidv | 
							⊢ ( 𝑟  =  𝑅  →  ( ∀ 𝑦  ∈  ran  𝑟 ( 𝑥 𝑟 𝑦  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  ran  𝑅 ( 𝑥 𝑅 𝑦  →  𝑥  =  𝑦 ) ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							raleqbidv | 
							⊢ ( 𝑟  =  𝑅  →  ( ∀ 𝑥  ∈  dom  𝑟 ∀ 𝑦  ∈  ran  𝑟 ( 𝑥 𝑟 𝑦  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  dom  𝑅 ∀ 𝑦  ∈  ran  𝑅 ( 𝑥 𝑅 𝑦  →  𝑥  =  𝑦 ) ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							rabeqel | 
							⊢ ( 𝑅  ∈   CnvRefRels   ↔  ( ∀ 𝑥  ∈  dom  𝑅 ∀ 𝑦  ∈  ran  𝑅 ( 𝑥 𝑅 𝑦  →  𝑥  =  𝑦 )  ∧  𝑅  ∈   Rels  ) )  |