Step |
Hyp |
Ref |
Expression |
1 |
|
cpnfval |
⊢ ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝑆 ⊆ ℂ → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) = ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ‘ 𝑁 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) ↔ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) |
5 |
4
|
rabbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } = { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
7 |
|
ovex |
⊢ ( ℂ ↑pm 𝑆 ) ∈ V |
8 |
7
|
rabex |
⊢ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ∈ V |
9 |
5 6 8
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ‘ 𝑁 ) = { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
10 |
2 9
|
sylan9eq |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) = { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
11 |
10
|
eleq2d |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
12 |
|
oveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑆 D𝑛 𝑓 ) = ( 𝑆 D𝑛 𝐹 ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
14 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
15 |
14
|
oveq1d |
⊢ ( 𝑓 = 𝐹 → ( dom 𝑓 –cn→ ℂ ) = ( dom 𝐹 –cn→ ℂ ) ) |
16 |
13 15
|
eleq12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) ↔ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
17 |
16
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ↔ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
18 |
11 17
|
bitrdi |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) |