| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) → 𝐴 ∈ V ) |
| 2 |
|
elex |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ V ) |
| 4 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
| 6 |
5
|
notbid |
⊢ ( 𝑥 = 𝐴 → ( ¬ 𝑥 ∈ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶 ) ) |
| 7 |
4 6
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ) |
| 8 |
|
df-dif |
⊢ ( 𝐵 ∖ 𝐶 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) } |
| 9 |
7 8
|
elab2g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ) |
| 10 |
1 3 9
|
pm5.21nii |
⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) |