Metamath Proof Explorer


Theorem eldif

Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion eldif ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴 ∈ V )
2 elex ( 𝐴𝐵𝐴 ∈ V )
3 2 adantr ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) → 𝐴 ∈ V )
4 eleq1 ( 𝑥 = 𝑦 → ( 𝑥𝐵𝑦𝐵 ) )
5 eleq1 ( 𝑥 = 𝑦 → ( 𝑥𝐶𝑦𝐶 ) )
6 5 notbid ( 𝑥 = 𝑦 → ( ¬ 𝑥𝐶 ↔ ¬ 𝑦𝐶 ) )
7 4 6 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐵 ∧ ¬ 𝑥𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ) )
8 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝐵𝐴𝐵 ) )
9 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝐶𝐴𝐶 ) )
10 9 notbid ( 𝑦 = 𝐴 → ( ¬ 𝑦𝐶 ↔ ¬ 𝐴𝐶 ) )
11 8 10 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) ) )
12 df-dif ( 𝐵𝐶 ) = { 𝑥 ∣ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶 ) }
13 7 11 12 elab2gw ( 𝐴 ∈ V → ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) ) )
14 1 3 13 pm5.21nii ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) )