Metamath Proof Explorer


Theorem eldifeldifsn

Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022)

Ref Expression
Assertion eldifeldifsn ( ( 𝑋𝐴𝑌 ∈ ( 𝐵𝐴 ) ) → 𝑌 ∈ ( 𝐵 ∖ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 snssi ( 𝑋𝐴 → { 𝑋 } ⊆ 𝐴 )
2 1 sscond ( 𝑋𝐴 → ( 𝐵𝐴 ) ⊆ ( 𝐵 ∖ { 𝑋 } ) )
3 2 sselda ( ( 𝑋𝐴𝑌 ∈ ( 𝐵𝐴 ) ) → 𝑌 ∈ ( 𝐵 ∖ { 𝑋 } ) )