Metamath Proof Explorer
Description: An element of a difference set is an element of the difference with a
singleton. (Contributed by AV, 2-Jan-2022)
|
|
Ref |
Expression |
|
Assertion |
eldifeldifsn |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑌 ∈ ( 𝐵 ∖ { 𝑋 } ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
snssi |
⊢ ( 𝑋 ∈ 𝐴 → { 𝑋 } ⊆ 𝐴 ) |
2 |
1
|
sscond |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐵 ∖ 𝐴 ) ⊆ ( 𝐵 ∖ { 𝑋 } ) ) |
3 |
2
|
sselda |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑌 ∈ ( 𝐵 ∖ { 𝑋 } ) ) |