Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldifi | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) → 𝐴 ∈ 𝐵 ) |