Metamath Proof Explorer


Theorem eldifn

Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994)

Ref Expression
Assertion eldifn ( 𝐴 ∈ ( 𝐵𝐶 ) → ¬ 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) )
2 1 simprbi ( 𝐴 ∈ ( 𝐵𝐶 ) → ¬ 𝐴𝐶 )