Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | eldifn | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) → ¬ 𝐴 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) | |
2 | 1 | simprbi | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) → ¬ 𝐴 ∈ 𝐶 ) |