Step |
Hyp |
Ref |
Expression |
1 |
|
eldifpw.1 |
⊢ 𝐶 ∈ V |
2 |
|
elpwi |
⊢ ( 𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵 ) |
3 |
|
unss1 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) |
4 |
|
unexg |
⊢ ( ( 𝐴 ∈ 𝒫 𝐵 ∧ 𝐶 ∈ V ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
5 |
1 4
|
mpan2 |
⊢ ( 𝐴 ∈ 𝒫 𝐵 → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
6 |
|
elpwg |
⊢ ( ( 𝐴 ∪ 𝐶 ) ∈ V → ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ 𝒫 𝐵 → ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) ) |
8 |
3 7
|
syl5ibr |
⊢ ( 𝐴 ∈ 𝒫 𝐵 → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ) ) |
9 |
2 8
|
mpd |
⊢ ( 𝐴 ∈ 𝒫 𝐵 → ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ) |
10 |
|
elpwi |
⊢ ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 → ( 𝐴 ∪ 𝐶 ) ⊆ 𝐵 ) |
11 |
10
|
unssbd |
⊢ ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 → 𝐶 ⊆ 𝐵 ) |
12 |
11
|
con3i |
⊢ ( ¬ 𝐶 ⊆ 𝐵 → ¬ ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 ) |
13 |
9 12
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵 ) → ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ∧ ¬ ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 ) ) |
14 |
|
eldif |
⊢ ( ( 𝐴 ∪ 𝐶 ) ∈ ( 𝒫 ( 𝐵 ∪ 𝐶 ) ∖ 𝒫 𝐵 ) ↔ ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ∧ ¬ ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵 ) → ( 𝐴 ∪ 𝐶 ) ∈ ( 𝒫 ( 𝐵 ∪ 𝐶 ) ∖ 𝒫 𝐵 ) ) |