Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ) ) |
2 |
|
eltpg |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐸 ) ) ) |
3 |
2
|
notbid |
⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ↔ ¬ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐸 ) ) ) |
4 |
|
ne3anior |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸 ) ↔ ¬ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐸 ) ) |
5 |
3 4
|
bitr4di |
⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸 ) ) ) |
6 |
5
|
pm5.32i |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸 ) ) ) |
7 |
1 6
|
bitri |
⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸 ) ) ) |