Metamath Proof Explorer


Theorem eldiftp

Description: Membership in a set with three elements removed. Similar to eldifsn and eldifpr . (Contributed by David A. Wheeler, 22-Jul-2017)

Ref Expression
Assertion eldiftp ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴𝐵 ∧ ( 𝐴𝐶𝐴𝐷𝐴𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ) )
2 eltpg ( 𝐴𝐵 → ( 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ↔ ( 𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸 ) ) )
3 2 notbid ( 𝐴𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ↔ ¬ ( 𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸 ) ) )
4 ne3anior ( ( 𝐴𝐶𝐴𝐷𝐴𝐸 ) ↔ ¬ ( 𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸 ) )
5 3 4 bitr4di ( 𝐴𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ↔ ( 𝐴𝐶𝐴𝐷𝐴𝐸 ) ) )
6 5 pm5.32i ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴𝐵 ∧ ( 𝐴𝐶𝐴𝐷𝐴𝐸 ) ) )
7 1 6 bitri ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 , 𝐸 } ) ↔ ( 𝐴𝐵 ∧ ( 𝐴𝐶𝐴𝐷𝐴𝐸 ) ) )