Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eldifvsn | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( V ∖ { 𝐵 } ) ↔ 𝐴 ≠ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | ⊢ ( 𝐴 ∈ ( V ∖ { 𝐵 } ) ↔ ( 𝐴 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) | |
2 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
3 | 2 | biantrurd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) ) |
4 | 1 3 | bitr4id | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( V ∖ { 𝐵 } ) ↔ 𝐴 ≠ 𝐵 ) ) |