Metamath Proof Explorer


Theorem eldifvsn

Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019)

Ref Expression
Assertion eldifvsn ( 𝐴𝑉 → ( 𝐴 ∈ ( V ∖ { 𝐵 } ) ↔ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝐴 ∈ ( V ∖ { 𝐵 } ) ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵 ) )
2 elex ( 𝐴𝑉𝐴 ∈ V )
3 2 biantrurd ( 𝐴𝑉 → ( 𝐴𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵 ) ) )
4 1 3 bitr4id ( 𝐴𝑉 → ( 𝐴 ∈ ( V ∖ { 𝐵 } ) ↔ 𝐴𝐵 ) )