Metamath Proof Explorer
Description: Equality theorem for disjoint elementhood, deduction version.
(Contributed by Peter Mazsa, 23-Sep-2021)
|
|
Ref |
Expression |
|
Hypothesis |
eldisjeqd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
eldisjeqd |
⊢ ( 𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldisjeqd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 2 |
|
eldisjeq |
⊢ ( 𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵 ) ) |