Step |
Hyp |
Ref |
Expression |
1 |
|
df-eldisj |
⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) |
2 |
|
disjlem19 |
⊢ ( 𝐵 ∈ 𝑉 → ( Disj ( ◡ E ↾ 𝐴 ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) ) |
3 |
1 2
|
biimtrid |
⊢ ( 𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) |
5 |
4
|
expdimp |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) ∧ 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ) → ( 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) |
6 |
|
eccnvepres3 |
⊢ ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = 𝑢 ) |
7 |
6
|
eleq2d |
⊢ ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → ( 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) ↔ 𝐵 ∈ 𝑢 ) ) |
8 |
6
|
eqeq1d |
⊢ ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → ( [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ↔ 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) |
9 |
7 8
|
imbi12d |
⊢ ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → ( ( 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) ∧ 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ) → ( ( 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) ) |
11 |
5 10
|
mpbid |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) ∧ 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ) → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) |
12 |
|
df-coels |
⊢ ∼ 𝐴 = ≀ ( ◡ E ↾ 𝐴 ) |
13 |
12
|
eceq2i |
⊢ [ 𝐵 ] ∼ 𝐴 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) |
14 |
13
|
eqeq2i |
⊢ ( 𝑢 = [ 𝐵 ] ∼ 𝐴 ↔ 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) |
15 |
11 14
|
imbitrrdi |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) ∧ 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ) → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) |
16 |
15
|
expimpd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) |
17 |
16
|
ex |
⊢ ( 𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |