Step |
Hyp |
Ref |
Expression |
1 |
|
disjdmqseq |
⊢ ( Disj ( ◡ E ↾ 𝐴 ) → ( ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ↔ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ) |
2 |
|
df-eldisj |
⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) |
3 |
|
n0el3 |
⊢ ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) |
4 |
|
dmqs1cosscnvepreseq |
⊢ ( ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) |
5 |
4
|
bicomi |
⊢ ( ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ↔ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) |
6 |
3 5
|
bibi12i |
⊢ ( ( ¬ ∅ ∈ 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ↔ ( ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ↔ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ) |
7 |
1 2 6
|
3imtr4i |
⊢ ( ElDisj 𝐴 → ( ¬ ∅ ∈ 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |