Description: Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | eldisjn0elb | ⊢ ( ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ↔ ( Disj ( ◡ E ↾ 𝐴 ) ∧ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) | |
2 | n0el3 | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) | |
3 | 1 2 | anbi12i | ⊢ ( ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ↔ ( Disj ( ◡ E ↾ 𝐴 ) ∧ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ) |