Description: Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjss | ⊢ ( 𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssres2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( ◡ E ↾ 𝐴 ) ⊆ ( ◡ E ↾ 𝐵 ) ) | |
| 2 | 1 | disjssd | ⊢ ( 𝐴 ⊆ 𝐵 → ( Disj ( ◡ E ↾ 𝐵 ) → Disj ( ◡ E ↾ 𝐴 ) ) ) |
| 3 | df-eldisj | ⊢ ( ElDisj 𝐵 ↔ Disj ( ◡ E ↾ 𝐵 ) ) | |
| 4 | df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) | |
| 5 | 2 3 4 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴 ) ) |