Metamath Proof Explorer


Theorem eldju2ndr

Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022)

Ref Expression
Assertion eldju2ndr ( ( 𝑋 ∈ ( 𝐴𝐵 ) ∧ ( 1st𝑋 ) ≠ ∅ ) → ( 2nd𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 df-dju ( 𝐴𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) )
2 1 eleq2i ( 𝑋 ∈ ( 𝐴𝐵 ) ↔ 𝑋 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) )
3 elun ( 𝑋 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ↔ ( 𝑋 ∈ ( { ∅ } × 𝐴 ) ∨ 𝑋 ∈ ( { 1o } × 𝐵 ) ) )
4 2 3 bitri ( 𝑋 ∈ ( 𝐴𝐵 ) ↔ ( 𝑋 ∈ ( { ∅ } × 𝐴 ) ∨ 𝑋 ∈ ( { 1o } × 𝐵 ) ) )
5 elxp6 ( 𝑋 ∈ ( { ∅ } × 𝐴 ) ↔ ( 𝑋 = ⟨ ( 1st𝑋 ) , ( 2nd𝑋 ) ⟩ ∧ ( ( 1st𝑋 ) ∈ { ∅ } ∧ ( 2nd𝑋 ) ∈ 𝐴 ) ) )
6 elsni ( ( 1st𝑋 ) ∈ { ∅ } → ( 1st𝑋 ) = ∅ )
7 eqneqall ( ( 1st𝑋 ) = ∅ → ( ( 1st𝑋 ) ≠ ∅ → ( 2nd𝑋 ) ∈ 𝐵 ) )
8 6 7 syl ( ( 1st𝑋 ) ∈ { ∅ } → ( ( 1st𝑋 ) ≠ ∅ → ( 2nd𝑋 ) ∈ 𝐵 ) )
9 8 ad2antrl ( ( 𝑋 = ⟨ ( 1st𝑋 ) , ( 2nd𝑋 ) ⟩ ∧ ( ( 1st𝑋 ) ∈ { ∅ } ∧ ( 2nd𝑋 ) ∈ 𝐴 ) ) → ( ( 1st𝑋 ) ≠ ∅ → ( 2nd𝑋 ) ∈ 𝐵 ) )
10 5 9 sylbi ( 𝑋 ∈ ( { ∅ } × 𝐴 ) → ( ( 1st𝑋 ) ≠ ∅ → ( 2nd𝑋 ) ∈ 𝐵 ) )
11 elxp6 ( 𝑋 ∈ ( { 1o } × 𝐵 ) ↔ ( 𝑋 = ⟨ ( 1st𝑋 ) , ( 2nd𝑋 ) ⟩ ∧ ( ( 1st𝑋 ) ∈ { 1o } ∧ ( 2nd𝑋 ) ∈ 𝐵 ) ) )
12 simprr ( ( 𝑋 = ⟨ ( 1st𝑋 ) , ( 2nd𝑋 ) ⟩ ∧ ( ( 1st𝑋 ) ∈ { 1o } ∧ ( 2nd𝑋 ) ∈ 𝐵 ) ) → ( 2nd𝑋 ) ∈ 𝐵 )
13 12 a1d ( ( 𝑋 = ⟨ ( 1st𝑋 ) , ( 2nd𝑋 ) ⟩ ∧ ( ( 1st𝑋 ) ∈ { 1o } ∧ ( 2nd𝑋 ) ∈ 𝐵 ) ) → ( ( 1st𝑋 ) ≠ ∅ → ( 2nd𝑋 ) ∈ 𝐵 ) )
14 11 13 sylbi ( 𝑋 ∈ ( { 1o } × 𝐵 ) → ( ( 1st𝑋 ) ≠ ∅ → ( 2nd𝑋 ) ∈ 𝐵 ) )
15 10 14 jaoi ( ( 𝑋 ∈ ( { ∅ } × 𝐴 ) ∨ 𝑋 ∈ ( { 1o } × 𝐵 ) ) → ( ( 1st𝑋 ) ≠ ∅ → ( 2nd𝑋 ) ∈ 𝐵 ) )
16 4 15 sylbi ( 𝑋 ∈ ( 𝐴𝐵 ) → ( ( 1st𝑋 ) ≠ ∅ → ( 2nd𝑋 ) ∈ 𝐵 ) )
17 16 imp ( ( 𝑋 ∈ ( 𝐴𝐵 ) ∧ ( 1st𝑋 ) ≠ ∅ ) → ( 2nd𝑋 ) ∈ 𝐵 )