Metamath Proof Explorer


Theorem eldm

Description: Membership in a domain. Theorem 4 of Suppes p. 59. (Contributed by NM, 2-Apr-2004)

Ref Expression
Hypothesis eldm.1 𝐴 ∈ V
Assertion eldm ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 )

Proof

Step Hyp Ref Expression
1 eldm.1 𝐴 ∈ V
2 eldmg ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 ) )
3 1 2 ax-mp ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 )