Metamath Proof Explorer


Theorem eldm2

Description: Membership in a domain. Theorem 4 of Suppes p. 59. (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypothesis eldm.1 𝐴 ∈ V
Assertion eldm2 ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 eldm.1 𝐴 ∈ V
2 eldm2g ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐵 ) )
3 1 2 ax-mp ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐵 )