Description: Membership in a domain. Theorem 4 of Suppes p. 59. (Contributed by NM, 1-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eldm.1 | ⊢ 𝐴 ∈ V | |
Assertion | eldm2 | ⊢ ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | ⊢ 𝐴 ∈ V | |
2 | eldm2g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐵 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐵 ) |