Metamath Proof Explorer


Theorem eldm2g

Description: Domain membership. Theorem 4 of Suppes p. 59. (Contributed by NM, 27-Jan-1997) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion eldm2g ( 𝐴𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eldmg ( 𝐴𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 ) )
2 df-br ( 𝐴 𝐵 𝑦 ↔ ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐵 )
3 2 exbii ( ∃ 𝑦 𝐴 𝐵 𝑦 ↔ ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐵 )
4 1 3 bitrdi ( 𝐴𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐵 ) )