Description: Domain membership. Theorem 4 of Suppes p. 59. (Contributed by NM, 27-Jan-1997) (Revised by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | eldm2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 ) ) | |
2 | df-br | ⊢ ( 𝐴 𝐵 𝑦 ↔ 〈 𝐴 , 𝑦 〉 ∈ 𝐵 ) | |
3 | 2 | exbii | ⊢ ( ∃ 𝑦 𝐴 𝐵 𝑦 ↔ ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐵 ) |
4 | 1 3 | bitrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 〈 𝐴 , 𝑦 〉 ∈ 𝐵 ) ) |