Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | eldmeldmressn | ⊢ ( 𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmressnsn | ⊢ ( 𝑋 ∈ dom 𝐹 → 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) ) | |
2 | elinel2 | ⊢ ( 𝑋 ∈ ( { 𝑋 } ∩ dom 𝐹 ) → 𝑋 ∈ dom 𝐹 ) | |
3 | dmres | ⊢ dom ( 𝐹 ↾ { 𝑋 } ) = ( { 𝑋 } ∩ dom 𝐹 ) | |
4 | 2 3 | eleq2s | ⊢ ( 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) → 𝑋 ∈ dom 𝐹 ) |
5 | 1 4 | impbii | ⊢ ( 𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) ) |