Metamath Proof Explorer


Theorem eldmeldmressn

Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018)

Ref Expression
Assertion eldmeldmressn ( 𝑋 ∈ dom 𝐹𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 eldmressnsn ( 𝑋 ∈ dom 𝐹𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) )
2 elinel2 ( 𝑋 ∈ ( { 𝑋 } ∩ dom 𝐹 ) → 𝑋 ∈ dom 𝐹 )
3 dmres dom ( 𝐹 ↾ { 𝑋 } ) = ( { 𝑋 } ∩ dom 𝐹 )
4 2 3 eleq2s ( 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) → 𝑋 ∈ dom 𝐹 )
5 1 4 impbii ( 𝑋 ∈ dom 𝐹𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) )