Description: Domain membership. Theorem 4 of Suppes p. 59. (Contributed by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐵 𝑦 ↔ 𝐴 𝐵 𝑦 ) ) | |
| 2 | 1 | exbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 ) ) |
| 3 | df-dm | ⊢ dom 𝐵 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐵 𝑦 } | |
| 4 | 2 3 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 ) ) |